skip to main content


Search for: All records

Creators/Authors contains: "Li, Zhaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Monolayer molybdenum disulfide (MoS 2 ) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS 2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T′) phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n -butyl lithium (BuLi) immersion treatments, we achieve 2H MoS 2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T′ phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS 2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH 3 CH 2 ) 2 NPh-MoS 2 (Et 2 N-MoS 2 )—to maintain heavily n-type doped 2H phase or the 1T/1T′ phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS 2 materials are characterized with confocal Raman/photoluminescence, absorption, x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS 2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials. 
    more » « less
  2. Abstract

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose‐based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy‐related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose‐based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology‐related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose‐based nanomaterials in lithium‐ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose‐based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed.

     
    more » « less